Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.3 - Exponential Functions - Exercises 7.3 - Page 392: 133

Answer

$a)$ $\int$$\ln(x)$$dx$ = $x\ln(x)-x+c$ $b$ $\frac{1}{e-1}$

Work Step by Step

$a)$ $\int$$\ln(x)$$dx$ = $x\ln(x)-x+c$ take diff both side $\frac{d}{dx}$($\int$$\ln(x)$)$dx$ = $\frac{d}{dx}$($x\ln(x)-x+c$) $\ln(x)$ = $x\frac{d}{dx}(\ln(x)+\ln(x)\frac{d}{dx}(x)-1$ $\ln(x)$ = $1+\ln(x)-1$ $\ln(x)$ = $\ln(x)$ $b)$ $avg$ = $\frac{1}{e-1}$$\int_{{\,1}}^{{\,e}}$$\ln(x)$ $dx$ $avg$ = $\frac{1}{e-1}$ ($x\ln(x)-x$)$|_{{\,1}}^{{\,e}}$ $avg$ = $\frac{1}{e-1}$ $[(e\ln(e)-e)-(\ln(1)-1)]$ $avg$ = $\frac{1}{e-1}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.