Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.3 - Exponential Functions - Exercises 7.3 - Page 390: 26

Answer

$$\frac{{dy}}{{dx}} = \frac{{y\left( {x{e^{x + y}} - 1} \right)}}{{x\left( {1 - y{e^{x + y}}} \right)}}$$

Work Step by Step

$$\eqalign{ & \ln xy = {e^{x + y}} \cr & {\text{use the logarithmic property: }}\ln ab = \ln a + \ln b \cr & \ln x + \ln y = {e^{x + y}} \cr & {\text{find the derivative using the implicit differentiation;}} \cr & {\text{differentiate both sides with respect to }}x \cr & \frac{d}{{dx}}\left[ {\ln x} \right] + \frac{d}{{dx}}\left[ {\ln y} \right] = \frac{d}{{dx}}\left[ {{e^{x + y}}} \right] \cr & {\text{solving derivatives}} \cr & \frac{1}{x} + \frac{1}{y}\frac{{dy}}{{dx}} = {e^{x + y}}\frac{d}{{dx}}\left[ {x + y} \right] \cr & \frac{1}{x} + \frac{1}{y}\frac{{dy}}{{dx}} = {e^{x + y}}\left( {1 + \frac{{dy}}{{dx}}} \right) \cr & \frac{1}{x} + \frac{1}{y}\frac{{dy}}{{dx}} = {e^{x + y}} + {e^{x + y}}\frac{{dy}}{{dx}} \cr & {\text{solving for }}\frac{{dy}}{{dx}} \cr & \frac{1}{y}\frac{{dy}}{{dx}} - {e^{x + y}}\frac{{dy}}{{dx}} = {e^{x + y}} - \frac{1}{x} \cr & \frac{1}{y}\frac{{dy}}{{dx}} - {e^{x + y}}\frac{{dy}}{{dx}} = \frac{{x{e^{x + y}} - 1}}{x} \cr & \left( {1 - y{e^{x + y}}} \right)\frac{{dy}}{{dx}} = \frac{{y\left( {x{e^{x + y}} - 1} \right)}}{x} \cr & \frac{{dy}}{{dx}} = \frac{{y\left( {x{e^{x + y}} - 1} \right)}}{{x\left( {1 - y{e^{x + y}}} \right)}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.