Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 4: Applications of Derivatives - Section 4.5 - Applied Optimization - Exercises 4.5 - Page 225: 48

Answer

See graph and explanations.

Work Step by Step

Step 1. Fermat's principle states that “light travels between two points along the path that requires the least time, as compared to other nearby paths.” Step 2. See figure; let the mirror be the x-axis, the light source be at $A(0,a)$ and the light receiver be at $B(b,c)$ where $a,b,c$ are positive constants. Step 3. Assume the reflection point is at $R(x,0), 0\lt x\lt b$; we can find distances $AO=\sqrt {x^2+a^2}$ and $BO=\sqrt {(b-x)^2+c^2}$. The total distance is then $s=AO+BO=\sqrt {x^2+a^2}+\sqrt {(b-x)^2+c^2}$ Step 4. Take the derivative to get $s'=\frac{2x}{\sqrt {x^2+a^2}}+\frac{-2(b-x)}{\sqrt {(b-x)^2+c^2}}$. Letting $s'=0$, we have $2x\sqrt {(b-x)^2+c^2}=2(b-x)\sqrt {x^2+a^2}$ which leads to $x^2((b-x)^2+c^2)=(b-x)^2(x^2+a^2)$ or $c^2x^2=a^2(b-x)^2$. Considering the domain for $x$, we have $cx=a(b-x)$ and $x=\frac{ab}{a+c}$ Step 5. To prove $\theta_1=\theta_2$, we need to show that $tan\theta_1=tan\theta_2$ which means that $\frac{x}{a}=\frac{b-x}{c}$ or $cx=a(b-x)$ and this is a result we have shown in step 4. Step 6. We can use $x=\frac{ab}{a+c}$ and test the signs of $s'$ to show that the corresponding $s(x)$ reaches a minimum. Or we can show $s''\gt0$ as the following: $s''=2(x^2+a^2)^{-1/2}-\frac{1}{2}(2x)(x^2+a^2)^{-3/2}(2x)+2((b-x)^2+c^2)^{-1/2}-\frac{1}{2}(2x)((b-x)^2+c^2)^{-3/2}(-2(b-x))=2(x^2+a^2)^{-1/2}-2x^2(x^2+a^2)^{-3/2}+2((b-x)^2+c^2)^{-1/2}+2x(b-x)((b-x)^2+c^2)^{-3/2}=2(x^2+a^2)^{-3/2}(x^2+a^2-x^2)+2((b-x)^2+c^2)^{-3/2}((b-x)^2+c^2+2x(b-x))=2a^2(x^2+a^2)^{-3/2}+2((b-x)^2+c^2)^{-3/2}((b-x)^2+c^2+2x(b-x))$ Thus $s''\gt0$ (because each term is greater than zero).
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.