Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 16: Integrals and Vector Fields - Section 16.6 - Surface Integrals - Exercises 16.6 - Page 1000: 18

Answer

$ \dfrac{ -\sqrt 2}{2}$

Work Step by Step

The surface integral can be found as: $dS= \sqrt {(f_x)^2 +(f_y)^2 +1} \ dy \ dx=\sqrt {(-1)^2+0^2+1} \ dz \ dy =\sqrt 2 $ We set up the integral and solve the surface integral as follows: $\iint_{S} G (x,y,z) \ dS=\int_0^1 \int_{0}^{1} (1-2y-z) \sqrt {2} \ dz \ dy$ or, $=\sqrt 2 \int_0^1 [z-2yz -\dfrac{z^2}{2}]_0^1 \ dy$ or, $=\sqrt 2 \int_0^1 [1-2y(1) -\dfrac{1}{2}(1^2-0)] \ dy$ or, $=\sqrt 2 \times \int_0^1 [\dfrac{1}{2}-2y] \ dy$ or, $= \sqrt 2[\dfrac{y}{2}-y^2]_0^1$ or, $= \dfrac{ -\sqrt 2}{2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.