Answer
$-16 \pi$
Work Step by Step
The tangential form for Green Theorem -- Counterclockwise Circulation $\oint_C F \cdot T ds= \iint_{R} (\dfrac{\partial N}{\partial x}-\dfrac{\partial M}{\partial y}) dx dy $
Now, $\oint_C F \cdot n ds= \iint_{R} \dfrac{\partial (y+2x)}{\partial x}-\dfrac{\partial (6y+x)}{\partial y} dx dy $
or, $= -4 \iint_{R} dx dy$
or, $= -4 \times$ Area of circle with radius 2
or, $= -4 \times \pi \times (2)^2$
or, $=-16 \pi$