#### Answer

Circulation $=0$

#### Work Step by Step

The circulation can be found as:
$\oint F \cdot dr =\oint(xi+y j+zk) \cdot ( dx i+dy j +dz k) ...(1)$
Here, $ \oint F \cdot dr=\oint x dx +y dy +z dz$
We can see that for this circulation of flux, the initial point and ending point are same at the points $(a,b,c)$.
Thus, equation (1) becomes:
$\oint F \cdot dr =\int_{a}^a x dx + \int_{b}^b y dy +\int_{c}^c z dz \\=[\dfrac{x^2}{2}]_a^a +[\dfrac{y^2}{2}]_b^b+[\dfrac{z^2}{2}]_c^c\\=0+0+0\\=0$