Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 16: Integrals and Vector Fields - Practice Exercises - Page 1029: 39



Work Step by Step

Stoke's Theorem states that $\oint F \cdot dr=\iint _S (\nabla \times F) \cdot n d\sigma $ $$ n=\dfrac{2}{7}i+\dfrac{6}{7}j-\dfrac{3}{7}k \\ d \sigma=\dfrac{7dA}{3}$$ Now, $$\iint _S (\nabla \times F) \cdot n d\sigma=\iint _{R} (\dfrac{6}{7} y)(\dfrac{7dA}{3}) \\ =\int_0^{2 \pi} \int_0^{1} 2r \space \sin \theta \space r \space dr \space d \space \theta \\=\int_0^{2 \pi} \dfrac{2}{3} \space \sin \theta \space \space d \theta \\ =\dfrac{2}{3}(0-0) \\=0$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.