Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 13: Vector-Valued Functions and Motion in Space - Section 13.3 Arc Length in Space - Exercises 13.3 - Page 759: 7

Answer

\begin{align*} \mathbf{T}& =\left(\frac{\cos t-t \sin t}{t+1}\right) \mathbf{i}+\left(\frac{\sin t+t \cos t}{t+1}\right) \mathbf{j}+\left(\frac{\sqrt{2} t^{1 / 2}}{t+1}\right) \mathbf{k}\\ \text{Length }& =\frac{\pi^{2}}{2}+\pi \end{align*}

Work Step by Step

Since $$\mathbf{r}=(t \cos t) \mathbf{i}+(t \sin t) \mathbf{j}+\frac{2 \sqrt{2}}{3} t^{3 / 2} \mathbf{k} $$ Then $$ \mathbf{v}=(\cos t-t \sin t) \mathbf{i}+(\sin t+t \cos t) \mathbf{j}+\left(\sqrt{2} t^{1 / 2}\right) \mathbf{k}$$ and \begin{aligned} |v|&=\sqrt{(\cos t-t \sin t)^{2}+(\sin t+t \cos t)^{2}+(\sqrt{2} t)^{2}}\\ &=\sqrt{1+t^{2}+2 t}\\ &=\sqrt{(t+1)^{2}}=|t+1|=t+1 \end{aligned} Hence \begin{align*} \mathbf{T}&=\frac{v}{|v|}\\ &=\left(\frac{\cos t-t \sin t}{t+1}\right) \mathbf{i}+\left(\frac{\sin t+t \cos t}{t+1}\right) \mathbf{j}+\left(\frac{\sqrt{2} t^{1 / 2}}{t+1}\right) \mathbf{k}\\ \text{Length }&=\int_{0}^{\pi}(t+1) d t\\ &=\left[\frac{t^{2}}{2}+t\right]_{0}^{\pi}\\ &=\frac{\pi^{2}}{2}+\pi \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.