Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 13: Vector-Valued Functions and Motion in Space - Section 13.2 - Integrals of Vector Functions; Projectile Motion - Exercises 13.2 - Page 753: 19


$50$ seconds

Work Step by Step

Since $$x=\left(v_{0} \cos \alpha\right) t $$ Then $$(21 \mathrm{km})\left(\frac{1000 \mathrm{m}}{1 \mathrm{km}}\right)=(840 \mathrm{m} / \mathrm{s})\left(\cos 60^{\circ}\right) t $$ Hence $ t=\frac{21,000 \mathrm{m}}{(840 \mathrm{m} / \mathrm{s})\left(\cos 60^{\circ}\right)}=50$ seconds
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.