Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 11: Parametric Equations and Polar Coordinates - Section 11.7 - Conics in Polar Coordinates - Exercises 11.7 - Page 685: 5

Answer

$F(0,\pm 1)$ Eccentricity$:\qquad e =\displaystyle \frac{1}{\sqrt{3}}$ Directrices$:\quad y=\pm 3$ Graph:

Work Step by Step

$3x^{2}+2y^{2}=6\qquad/\div 6$ $\displaystyle \frac{x^{2}}{2}+\frac{y^{2}}{3}=1,\qquad a=\sqrt{3},b=\sqrt{2}$ The major axis is vertical. $c=\sqrt{a^{2}-b^{2}}=\sqrt{3-2}=1$ $F(0,\pm 1)$ Eccentricity$:\qquad e=\displaystyle \frac{c}{a}=\frac{1}{\sqrt{3}}$ Directrices$:\quad y=0\displaystyle \pm\frac{a}{e}$ $y=\displaystyle \pm\frac{\sqrt{3}}{(\frac{1}{\sqrt{3}})}$ $y=\pm 3$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.