Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 10: Infinite Sequences and Series - Section 10.9 - Convergence of Taylor Series - Exercises 10.9 - Page 626: 49


a) $Q(x)=1+kx+\dfrac{k(k-1)}{2}x^2$ b) $0 \lt x \lt 0.21544$

Work Step by Step

a) Write the Taylor series for $f(x)$ at $x=0$ . $Q(x)=f(0)+f^{,}(x-0)+\dfrac{f^{,,}(0)}{2!}(x-0)^2=1+kx+\dfrac{k(k-1)}{2}x^2$ (b) The Remainder Estimation Theorem states that $|R_n(x)| \leq M \dfrac{|x-a|^{n+1}}{(n+1)!}$ and $|R_2(x)| =|\dfrac{ 3! \times x^3}{3 !}|=|x^3|$ Since, $|x| \lt \dfrac{1}{100}$ , This implies that $|x|^3 \lt \dfrac{1}{100}$ $\implies \dfrac{10}{11} \lt 1-x \lt \dfrac{9}{10} $ $\implies 0 \lt x \lt 0.21544$ Therefore, $x$ is $0 \lt x \lt 0.21544$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.