Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 15 - Multiple Integrals - 15.6 Exercises - Page 1040: 13

Answer

$\approx 13.9783$

Work Step by Step

The surface area of the part $z=f(x,y)$ can be defined as: $A(S)=\iint_{D} \sqrt {1+(f_x)^2+(f_y)^2} dx \ dy$ and, $\iint_{D} dA$ is the projection of the surface on the xy-plane. Now, the area of the given surface is: $A(S)=\iint_{D} \sqrt {1+(-2xe^{-x^2-y^2})^2+(-2ye^{-x^2-y^2})^2} dA= \iint_{D} \sqrt {4(x^2+y^2)e^{-2(x^2+y^2)}} dA$ Next, we need to use the polar co-ordinates because of the part $x^2+y^2$ $A(S)=\iint_{D} r \sqrt {1+4r^2 e^{-2r^2}} dA \\=\int_{0}^{2\pi} \int_{0}^{2} r \sqrt {1+4r^2 e^{-2r^2}} \ r dr d \theta \\= 2 \pi \times \int_0^{2} r \sqrt {1+4r^2 e^{-2r^2}} \ r dr $ Now, by using a calculator, we have: $A(S)=2 \pi \int_0^{2} r \sqrt {1+4r^2 e^{-2r^2}} \ r dr \approx 13.9783$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.