Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 15 - Multiple Integrals - 15.5 Exercises - Page 1036: 3

Answer

Mass of lamina: $42k$ Center of lamina: $(2,\frac{85}{28})$

Work Step by Step

Find the mass of the lamina: $m=\iint_D\sigma(x,y)dA=\int_1^3\int_1^4ky^2dydx=\int_1^3\frac{ky^3}{3}]_1^4dx=\int_1^321k dx=21kx]_1^3=42k$ Find the moment of the lamina about the x-axis: $M_x=\iint_D y\sigma(x,y)dydx=\int_1^3\int_1^4ky^3dydx=\int_1^3\frac{ky^4}{4}]_1^4dx=\int_1^3\frac{255k}{4}dx=\frac{255kx}{4}]_1^3=\frac{255k}{2}$ Find the moment of the lamina about the y-axis: $M_y=\iint_Dx\sigma(x,y)dydx=\int_1^3\int_1^4kxy^2dydx=\int_1^3\frac{kxy^3}{3}]_1^4dx=\int_1^321kxdx=\frac{21kx^2}{2}]_1^3=84k$ Then, $\bar{x}=\frac{M_y}{m}=\frac{84k}{42k}=2$ and $\bar{y}=\frac{M_x}{y}=\frac{255k/2}{42k}=\frac{85}{28}$ So, the center of the lamina is $(\bar{x},\bar{y})=(2,\frac{85}{28})$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.