Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 15 - Multiple Integrals - 15.5 Exercises - Page 1036: 2

Answer

The total charge is $\frac{2\pi}{3}$ coulombs.

Work Step by Step

Given: - A disk $x^2+y^2\leq 1$ (or in polar coordinates $0\leq r\leq 1$) - Electric charge density given by $\sigma(x,y)=\sqrt{x^2+y^2}$ (or in polar coordinates $\sigma(r,\theta) = \sqrt{r^2}=r$ The total charge is given by $T=\int_0^1\int_0^{2\pi} \sigma(r,\theta) \cdot rd\theta dr$: Evaluate $T$: $T=\int_0^1\int_0^{2\pi} r\cdot rd\theta dr$ $=\int_0^1\int_0^{2\pi}r^2d\theta dr$ $=\int_0^1r^2\theta]_0^{2\pi}dr$ $=\int_0^12\pi r^2dr$ $=\frac{2\pi r^3}{3}]_0^1$ $=\frac{2\pi}{3}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.