Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 11 - Infinite Sequences and Series - 11.6 Exercises - Page 762: 31


The series is divergent.

Work Step by Step

Use the Ratio Test:$\lim\limits_{n \to \infty}\Big|\frac{a_{n+1}}{a_n}\Big|$. Use the recursive definition $ a_{n+1}=\frac{5n+1}{4n+3}a_n$. Using substitution, $\lim\limits_{n \to \infty}\Big|\frac{\frac{5n+1}{4n+3}a_n}{a_n}\Big|$. The $a_n$ terms cancel, and we are left with $\lim\limits_{n \to \infty}\Big|\frac{5n+1}{4n+3}\Big|=\frac{5}{4}>1$. Since this limit is greater than one, the $\Sigma a_n$ is Divergent by the Ratio Test.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.