Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 11 - Infinite Sequences and Series - 11.6 Exercises - Page 762: 20

Answer

The series converges.

Work Step by Step

The ratio test states that, for an infinite series, if $\lim\limits_{n \to \infty}\left|\frac{a_{n+1}}{a_n}\right|<1$, the series is convergent. If $\lim\limits_{n \to \infty}\left|\frac{a_{n+1}}{a_n}\right|>1$ or $\lim\limits_{n \to \infty}\left|\frac{a_{n+1}}{a_n}\right|=\infty$, the series is divergent. If $\lim\limits_{n \to \infty}\left|\frac{a_{n+1}}{a_n}\right|=0$, we cannot make a conclusion. We use this test to determine whether the series $$\sum_{n=1}^{\infty}\frac{(-2)^n}{n^n}$$ is convergent or divergent. First, we set up the limit according to the formula $\lim\limits_{n \to \infty}\left|\frac{a_{n+1}}{a_n}\right|$ by plugging in $n+1$ for $n$ in the numerator and leaving $n$ alone in the denominator: $$\lim\limits_{n \to \infty}\left|\frac{(-2)^{n+1}}{n^{n+1}}\div\frac{(-2)^n}{n^n}\right|$$ We simplify by subtracting exponents: $$\lim\limits_{n \to \infty}\left|\frac{2}{n}\right|$$The limit as $n\to\infty$ of a fraction whose denominator has a greater power than its numerator is $0$. In this case, $$\lim\limits_{n \to \infty}\left|\frac{2}{n}\right|=0$$Since $0<1$, the series converges.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.