Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 14 - Section 14.2 - Area between Two Curves and Applications - Exercises - Page 1030: 7

Answer

$$A = \frac{{31}}{3}$$

Work Step by Step

$$\eqalign{ & {\text{From the given graph we have}} \cr & f\left( x \right) = 5 - {x^2}{\text{ and }}g\left( x \right) = {x^2} - 2x + 1 \cr & f\left( x \right) \geqslant g\left( x \right){\text{ on the interval }}0 \leqslant x \leqslant 2 \cr & g\left( x \right) \geqslant f\left( x \right){\text{ on the interval }}2 \leqslant x \leqslant 3 \cr & {\text{The area is given by}} \cr & A = \int_0^2 {\left[ {\left( {5 - {x^2}} \right) - \left( {{x^2} - 2x + 1} \right)} \right]} dx \cr & {\text{ }} + \int_2^3 {\left[ {\left( {{x^2} - 2x + 1} \right) - \left( {5 - {x^2}} \right)} \right]} dx \cr & A = \int_0^2 {\left( {5 - {x^2} - {x^2} + 2x - 1} \right)} dx + \int_2^3 {\left( {{x^2} - 2x + 1 - 5 + {x^2}} \right)} dx \cr & A = \int_0^2 {\left( {4 - 2{x^2} + 2x} \right)} dx + \int_2^3 {\left( {2{x^2} - 2x - 4} \right)} dx \cr & {\text{Integrate}} \cr & A = \left[ {4x - \frac{{2{x^3}}}{3} + {x^2}} \right]_0^2 + \left[ {\frac{{2{x^3}}}{3} - {x^2} - 4x} \right]_2^3 \cr & A = \left[ {4\left( 2 \right) - \frac{{2{{\left( 2 \right)}^3}}}{3} + {{\left( 2 \right)}^2}} \right] + \left[ {\frac{{2{{\left( 3 \right)}^3}}}{3} - {{\left( 3 \right)}^2} - 4\left( 3 \right)} \right] \cr & - \left[ {\frac{{2{{\left( 2 \right)}^3}}}{3} - {{\left( 2 \right)}^2} - 4\left( 2 \right)} \right] \cr & {\text{Simplifying}} \cr & A = \frac{{20}}{3} - 3 + \frac{{20}}{3} \cr & A = \frac{{31}}{3} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.