Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 14 - Section 14.2 - Area between Two Curves and Applications - Exercises - Page 1030: 4

Answer

$$A = \frac{{82}}{3}$$

Work Step by Step

$$\eqalign{ & {\text{From the graph we can note that }} \cr & - {x^2} + 3x + 12 > 12 - 6x{\text{ on the interval }}1 \leqslant x \leqslant 3,{\text{ then}} \cr & {\text{The area of the shadow region is given by}} \cr & A = \int_1^3 {\left[ {\left( { - {x^2} + 3x + 12} \right) - \left( {12 - 6x} \right)} \right]dx} \cr & A = \int_1^3 {\left( { - {x^2} + 3x + 12 - 12 + 6x} \right)dx} \cr & A = \int_1^3 {\left( { - {x^2} + 9x} \right)dx} \cr & {\text{Integrating}} \cr & A = \left[ { - \frac{1}{3}{x^3} + \frac{9}{2}{x^2}} \right]_1^3 \cr & A = \left[ { - \frac{1}{3}{{\left( 3 \right)}^3} + \frac{9}{2}{{\left( 3 \right)}^2}} \right] - \left[ { - \frac{1}{3}{{\left( 1 \right)}^3} + \frac{9}{2}{{\left( 1 \right)}^2}} \right] \cr & A = \frac{{63}}{2} - \frac{{25}}{6} \cr & A = \frac{{82}}{3} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.