Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 13 - Section 13.1 - The Indefinite Integral - Exercises - Page 959: 55

Answer

$St)=-15t^{3}+450t^{2}+4200t,$ $54,720 $ million gallons sold

Work Step by Step

The instaneous rate of change of $S(t)$ is $S'(t)=s(t)=-45t^{2}+900t+4,200$ million gallons per year $S(t)=\displaystyle \int(-45t^{2}+900t+4,200)dt$ $=-45\displaystyle \cdot\frac{t^{3}}{3}+900\cdot\frac{t^{2}}{2}+4,200t+C$ $=-15t^{3}+450t^{2}+4200t+C$ To find C, use the given hint: $S(0)=0$ $0=0+0+0+C$ $C=0$ $St)=-15t^{3}+450t^{2}+4200t$ The start of the year 2008 is $t=8$ years after the start of 2000. $S(7)=-15(8^{3})+450(8^{2})+4200(8)=54,720$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.