Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 13 - Review - Review Exercises - Page 1004: 37

Answer

$\dfrac{-1}{8} \ln (\dfrac{2}{5}) \approx 0.1145$

Work Step by Step

Given: $I=\int_0^{ \ln 2} \dfrac{e^{-2x}}{1+4 e^{-2x}} \ dx$ Let us consider that $u=1+4 e^{-2x} \implies dx=\dfrac{-du}{8e^{-2x}}$ Now, we have $I=\int_0^{ \ln 2} \dfrac{e^{-2x}}{u} (\dfrac{-du}{8e^{-2x}})$ or, $=-\dfrac{1}{8} \int_0^{ \ln 2} \dfrac{\ du}{u}$ or, $=\dfrac{-1}{8}[\ln |u|]_0^{ \ln 2}$ or, $=\dfrac{-1}{8}[\ln |1+4 e^{-2x} |]_0^{ \ln 2}$ or, $=\dfrac{-1}{8}[\ln |1+4 e^{-2(\ln 2)} |]+\dfrac{-1}{8}[\ln |1+4 e^{-2(0)} |]$ or, $=\dfrac{-1}{8} \ln (\dfrac{2}{5}) \approx 0.1145$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.