Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 13 - Review - Review Exercises - Page 1004: 18

Answer

$\int x\sqrt {x-1}dx=\frac{2}{5}(x-1)^{\frac{5}{2}}+\frac{2}{3}(x-1)^{\frac{3}{2}}+C$

Work Step by Step

Substitution: $u=x-1$ $x=u+1$ $dx=du$ $\int x\sqrt {x-1}dx=\int(u+1)u^{\frac{1}{2}}du=\int(u^{\frac{3}{2}}+u^{\frac{1}{2}})du=\frac{u^{\frac{5}{2}}}{{\frac{5}{2}}}+\frac{u^{\frac{3}{2}}}{\frac{3}{2}}+C=\frac{2}{5}(x-1)^{\frac{5}{2}}+\frac{2}{3}(x-1)^{\frac{3}{2}}+C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.