Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 10 - Section 10.1 - Limits: Numerical and Graphical Viewpoints - Exercises - Page 701: 44a

Answer

$\displaystyle \lim_{x\rightarrow 14.75^{-}}m(t)=66,\quad\lim_{x\rightarrow 14.75^{+}}m(t)=10,$ $\displaystyle \quad \lim_{x\rightarrow 14.75}m(t)$ does not exist $\quad m(14.75)=10$

Work Step by Step

Tracing the points of the graph to the left of $x=14.75$, and sliding towards the value $x=14.75,$ the y-coordinates approach the value $66.$ $\displaystyle \lim_{x\rightarrow 14.75^{-}}m(t)=66$ Tracing the points of the graph to the right of $x=14.75$, and sliding towards the value $x=14.75,$ the y-coordinates approach the value $10$ $\displaystyle \lim_{x\rightarrow 14.75^{+}}m(t)=10$ Thus, the one-sided limits exist but are not equal. $\displaystyle \lim_{x\rightarrow 14.75}m(t)$ does not exist. The point $(14.75,66)$ is NOT on the graph, but the point $(14.75,10)$ is, so $m(14.75)=10$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.