Answer
$\displaystyle \lim_{x\rightarrow 14.75^{-}}m(t)=66,\quad\lim_{x\rightarrow 14.75^{+}}m(t)=10,$
$\displaystyle \quad \lim_{x\rightarrow 14.75}m(t)$ does not exist
$\quad m(14.75)=10$
Work Step by Step
Tracing the points of the graph to the left of $x=14.75$, and sliding towards the value $x=14.75,$ the y-coordinates approach the value $66.$
$\displaystyle \lim_{x\rightarrow 14.75^{-}}m(t)=66$
Tracing the points of the graph to the right of $x=14.75$, and sliding towards the value $x=14.75,$ the y-coordinates approach the value $10$
$\displaystyle \lim_{x\rightarrow 14.75^{+}}m(t)=10$
Thus, the one-sided limits exist but are not equal.
$\displaystyle \lim_{x\rightarrow 14.75}m(t)$ does not exist.
The point $(14.75,66)$ is NOT on the graph, but the point $(14.75,10)$ is, so
$m(14.75)=10$