Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 10 - Review - Review Exercises - Page 771: 17

Answer

The limit is not defined.

Work Step by Step

Our aim is to compute the value of $\lim\limits_{x \to \ 4} \dfrac{x^2+8}{x^2-2x-8}$. Here, we need to use the formula of: $\lim \limits_{x\to a}f(x)=f(a)$, this implies that: $\lim\limits_{x \to \ 4} \dfrac{x^2+8}{x^2-2x-8}=\dfrac{(4)^2+8}{(4)^2-(2)(4)-8}\\=\dfrac{24}{0}$ Now, $\lim\limits_{x \to \ 4^{+}} \dfrac{x^2+8}{x^2-2x-8}=\dfrac{(4.01)^2+8}{(4.01)^2-(2)(4.01)-8}\\=+\infty$ and $\lim\limits_{x \to \ 4^{-}} \dfrac{x^2+8}{x^2-2x-8}=\dfrac{(3.99)^2+8}{(3.99)^2-(2)(3.99)-8}\\=-\infty$ This implies that $\lim \limits_{x\to e^{-}}f(x) \ne \lim \limits_{x\to e^{+}}f(x)$ Therefore, we can state that the limit is not defined.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.