Calculus with Applications (10th Edition)

Published by Pearson
ISBN 10: 0321749006
ISBN 13: 978-0-32174-900-0

Chapter 5 - Graphs and the Derivative - 5.3 Higher Derivatives, Concavity, and the Second Derivative Test - 5.3 Exercises - Page 284: 48

Answer

Concave upward on $$ (-\infty, -\frac{1}{\sqrt {2\ln 5}} ), \quad (\frac{1}{\sqrt {2\ln 5}} , \infty) , $$ concave downward on $$ (-\frac{1}{\sqrt {2\ln 5}} , \frac{1}{\sqrt {2\ln 5}} ) , $$ inflection point at $$ (-\frac{1}{\sqrt {2\ln 5}} ,e^{-(\frac{1}{2})} ), \quad (\frac{1}{\sqrt {2\ln 5}} ,e^{-(\frac{1}{2})} ). $$

Work Step by Step

$$ f(x)=5^{-x^{2}} $$ The first derivative is $$ \begin{aligned} f^{\prime}(x) &=(\ln5)5^{-x^{2}}. (-2x) \\ &=(-2x \ln5)5^{-x^{2}} \end{aligned} $$ and the second derivative is $$ \begin{aligned} f^{\prime \prime}(x) &=-2 \ln 5 \cdot 5^{-x^{2}}+(-2 \ln 5) x \cdot(\ln 5)\left(5^{-x^{2}}\right)(-2 x) \\ &=(2 \ln 5) 5^{-x^{2}}\left[2 \ln 5\left(x^{2}\right)-1\right] \end{aligned} $$ A function $f$ is concave upward on an interval if $f^{\prime\prime}(x) \gt 0$ for all $x$ in the interval, so $$ \begin{aligned} f^{\prime\prime}(x) &=(2 \ln 5) 5^{-x^{2}}\left[2 \ln 5\left(x^{2}\right)-1\right] \gt 0 \\ \Rightarrow\quad\quad\quad\quad\quad\quad\quad\quad\quad\\ \left[2 \ln 5\left(x^{2}\right)-1\right] & \gt 0 \\ 2 \ln 5\left(x^{2}\right) & \gt 1 \\ \left(x^{2}\right) & \gt \frac{1}{2\ln 5} \\ \left(x^{2}\right) & \gt \frac{1}{2\ln 5} \\ \Rightarrow\quad\quad\quad\quad\quad\quad\quad\quad\quad\\ x \lt -\frac{1}{\sqrt {2\ln 5}} \quad \text {and} & \quad x \gt \frac{1}{\sqrt {2\ln 5}} \\ \end{aligned} $$ so $f(x)$ is concave upward on $(-\infty, -\frac{1}{\sqrt {2\ln 5}} ), \quad (\frac{1}{\sqrt {2\ln 5}} , \infty)$. Also function $f$ is concave downward on an interval if $f^{\prime\prime}(x) \lt 0$ for all $x$ in the interval, so $$ \begin{aligned} f^{\prime\prime}(x) &=(2 \ln 5) 5^{-x^{2}}\left[2 \ln 5\left(x^{2}\right)-1\right] \lt 0 \\ \Rightarrow\quad\quad\quad\quad\quad\quad\quad\quad\quad\\ \left[2 \ln 5\left(x^{2}\right)-1\right] & \lt 0 \\ 2 \ln 5\left(x^{2}\right) & \lt 1 \\ \left(x^{2}\right) & \lt \frac{1}{2\ln 5} \\ \left(x^{2}\right) & \lt \frac{1}{2\ln 5} \\ \Rightarrow\quad\quad\quad\quad\quad\quad\quad\quad\quad\\ -\frac{1}{\sqrt {2\ln 5}} \lt x \lt \frac{1}{\sqrt {2\ln 5}} \\ \end{aligned} $$ so $f(x)$ is concave downward on $(-\frac{1}{\sqrt {2\ln 5}} , \frac{1}{\sqrt {2\ln 5}} ) $ . Since the sign of $f^{\prime\prime}(x)$ changes from positive to negative at $ -\frac{1}{\sqrt {2\ln 5}} $, the graph changes from concave upward to concave downward at that point, so $(-\frac{1}{\sqrt {2\ln 5}} , f(-\frac{1}{\sqrt {2\ln 5}} ))$ is inflection point. Also, the sign of $f^{\prime\prime}(x)$ changes from negative to positive at $\frac{1}{\sqrt {2\ln 5}} $, the graph changes from concave downward to concave upward at that point, so $(\frac{1}{\sqrt {2\ln 5}} , f(\frac{1}{\sqrt {2\ln 5}} ))$ is inflection point. Now ,we find $f(-\frac{1}{\sqrt {2\ln 5}} ), f(\frac{1}{\sqrt {2\ln 5}} )$as follows: $$ \begin{aligned} f(-\frac{1}{\sqrt {2\ln 5}} ) &=5^{-(-\frac{1}{\sqrt {2\ln 5}})^{2}} \\ &=5^{-(\frac{1}{2\ln 5})} \\ &=e^{-(\frac{1}{2})} \end{aligned} $$ and $$ \begin{aligned} f(\frac{1}{\sqrt {2\ln 5}} ) &=5^{-(\frac{1}{\sqrt {2\ln 5}})^{2}} \\ &=5^{-(\frac{1}{2\ln 5})} \\ &=e^{-(\frac{1}{2})} \end{aligned} $$ Finally, we have inflection points at $$ (-\frac{1}{\sqrt {2\ln 5}} ,e^{-(\frac{1}{2})} ), \quad (\frac{1}{\sqrt {2\ln 5}} ,e^{-(\frac{1}{2})} ). $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.