#### Answer

\[{y^,} = \frac{{\ln 4}}{x}\]

#### Work Step by Step

\[\begin{gathered}
y = \,\left( {\ln 4} \right)\,\left( {\ln \left| {3x} \right|} \right) \hfill \\
Differentiate \hfill \\
{y^,} = \,\,{\left[ {\,\left( {\ln 4} \right)\,\left( {\ln \left| {3x} \right|} \right)} \right]^,} \hfill \\
Pull\,\,out\,\,the\,\,constant \hfill \\
{y^,} = \ln 4\,\,{\left[ {\ln \left| {3x} \right|} \right]^,} \hfill \\
Use\,\,the\,\,\,formula \hfill \\
\frac{d}{{dx}}\,\,\left[ {\ln g\,\left( x \right)} \right] = \frac{{{g^,}\,\left( x \right)}}{{g\,\left( x \right)}} \hfill \\
Then \hfill \\
{y^,} = \ln 4\,\left( {\frac{{\,{{\left( {3x} \right)}^,}}}{{3x}}} \right) \hfill \\
{y^,} = \ln 4\,\left( {\frac{3}{{3x}}} \right) \hfill \\
{y^,} = \frac{{\ln 4}}{x} \hfill \\
\hfill \\
\end{gathered} \]