Calculus with Applications (10th Edition)

Published by Pearson
ISBN 10: 0321749006
ISBN 13: 978-0-32174-900-0

Chapter 4 - Calculating the Derivative - 4.5 Derivatives of Logarithmic Functions - 4.5 Exercises: 33

Answer

\[{y^,} = \frac{1}{{\,\left( {x - 1} \right)\ln 10}}\]

Work Step by Step

\[\begin{gathered} y = \log \left| {1 - x} \right| \hfill \\ Find\,\,the\,\,derivative \hfill \\ {y^,} = \,\,{\left[ {\log \left| {1 - x} \right|} \right]^,} \hfill \\ Use\,\,the\,\,formula \hfill \\ \frac{d}{{dx}}\,\,\left[ {{{\log }_a}\left| {g\,\left( x \right)} \right|} \right] = \frac{1}{{\ln a}} \cdot \frac{{{g^,}\,\left( x \right)}}{{g\,\left( x \right)}} \hfill \\ Here\,\,\,g\,\left( x \right) = 1 - x\,, \hfill \\ Then \hfill \\ {y^,} = \,\frac{1}{{\ln 10}}\,\left( {\frac{{\,{{\left( {1 - x} \right)}^,}}}{{1 - x}}} \right) \hfill \\ {y^,} = \,\frac{1}{{\ln 10}}\,\left( {\frac{{ - 1}}{{1 - x}}} \right) \hfill \\ Simplifying \hfill \\ {y^,} = \frac{1}{{\,\left( {x - 1} \right)\ln 10}} \hfill \\ \end{gathered} \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.