Calculus with Applications (10th Edition)

Published by Pearson
ISBN 10: 0321749006
ISBN 13: 978-0-32174-900-0

Chapter 4 - Calculating the Derivative - 4.2 Derivatives of Products and Quotients - 4.2 Exercises - Page 217: 48

Answer

$$ s(x)=\frac{x}{m+nx}, $$ $m, n$ are constants Then, by the quotient rule, $$ s^{\prime}(x)=\left(\frac{u(x)}{v(x)}\right)^{\prime}=\frac{v(x) \cdot u^{\prime}(x)-u(x) v^{\prime}(x)}{[v(x)]^{2}} $$ where $u(x)=x$ and $v(x)=m+nx$ , then we have $$ \begin{aligned} s^{\prime}(x) &=\frac{(m+n x) 1-x(n)}{(m+n x)^{2}} \\ &=\frac{m+n x-n x}{(m+n x)^{2}} \\ &=\frac{m}{(m+n x)^{2}} \end{aligned} $$ (b) The rate of contraction when the concentration of the drug is $x=50 , m=10 , n=3$ is given by $$ \begin{aligned} s^{\prime}(50) &=\frac{10}{(10+50 (3) )^{2}}\\ &=\frac{1}{2560} \\ &\approx 0.000391 \text { mm. per ml.}. \end{aligned} $$

Work Step by Step

$$ s(x)=\frac{x}{m+nx}, $$ $m, n$ are constants Then, by the quotient rule, $$ s^{\prime}(x)=\left(\frac{u(x)}{v(x)}\right)^{\prime}=\frac{v(x) \cdot u^{\prime}(x)-u(x) v^{\prime}(x)}{[v(x)]^{2}} $$ where $u(x)=x$ and $v(x)=m+nx$ , then we have $$ \begin{aligned} s^{\prime}(x) &=\frac{(m+n x) 1-x(n)}{(m+n x)^{2}} \\ &=\frac{m+n x-n x}{(m+n x)^{2}} \\ &=\frac{m}{(m+n x)^{2}} \end{aligned} $$ (b) The rate of contraction when the concentration of the drug is $x=50 , m=10 , n=3$ is given by $$ \begin{aligned} s^{\prime}(50) &=\frac{10}{(10+50 (3) )^{2}}\\ &=\frac{1}{2560} \\ &\approx 0.000391 \text { mm. per ml.}. \end{aligned} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.