#### Answer

0

#### Work Step by Step

For x = 0 the instantaneous rate of change is $\lim\limits_{h \to 0} \frac{h(0 + h) - h(0)}{h}$
$x(0+h)=(0+h)^{2}+2=h^{2}+2$
$x(0) = 2$
The instantaneous rate of change is then: $\lim\limits_{h \to 0} \frac{g(0 + h) - g(0)}{h} = \lim\limits_{h \to 0} \frac{h^{2}+2-2}{h}=\lim\limits_{h \to 0} h = 0$