Calculus with Applications (10th Edition)

Published by Pearson
ISBN 10: 0321749006
ISBN 13: 978-0-32174-900-0

Chapter 3 - The Derivative - 3.1 Limits - 3.1 Exercises - Page 136: 10

Answer

$a)$ i) $\lim\limits_{x \to 1^-} = 1$ ii) $\lim\limits_{x \to 1^+} = 1$ iii) $\lim\limits_{x \to 1} = 1$ iv) $f(1) = 2$ $b)$ i) $\lim\limits_{x \to 2^-} = 0$ ii) $\lim\limits_{x \to 2^+} = 0$ iii) $\lim\limits_{x \to 2} = 0$ iv) $f(2) = 0$

Work Step by Step

$a)$ i) As we approach the $x$-value of $1$ from the L.H.S, $f(x)$ approaches $1$. $\displaystyle\lim_{x\rightarrow 1^-}f(x)=1$ ii) As we approach the $x$-value of $1$ from the R.H.S, $f(x)$ approaches $1$. $\displaystyle\lim_{x\rightarrow 1^+}f(x)=1$ iii) Since left-hand limit = right-hand limit, the limits exists at $x=1$. iv) Even though the value of $f(x)$ achieved while approaching $1$ is $1$, $f(x)$ is itself defined at $(1,2)$ and not $(1,1)$ (input $1$, function outputs $2$.) $b)$ i) As we approach the $x$-value of $2$ from the L.H.S, $f(x)$ approaches $0$. $\displaystyle\lim_{x\rightarrow 2^-}f(x)=0$ ii) As we approach the $x$-value of $2$ from the R.H.S, $f(x)$ approaches $0$. $\displaystyle\lim_{x\rightarrow 2^+}f(x)=0$ iii) Since left-hand limit = right-hand limit, the limits exists at $x=2$. iv) At $x = 2$, the function $f(x)$ is defined (input $2$, function outputs $0$.)
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.