Calculus with Applications (10th Edition)

Published by Pearson
ISBN 10: 0321749006
ISBN 13: 978-0-32174-900-0

Chapter 12 - Sequences and Series - 12.3 Taylor Polynomials at 0 - 12.3 Exercises - Page 631: 7

Answer

$${P_4}\left( x \right) = - 1 + \frac{1}{3}x + \frac{1}{9}{x^2} + \frac{5}{{81}}{x^3} + \frac{{10}}{{243}}{x^4}$$

Work Step by Step

$$\eqalign{ & f\left( x \right) = \root 3 \of {x - 1} \cr & f\left( x \right) = {\left( {x - 1} \right)^{1/3}} \cr & {\text{Use the definition of Taylor Polynomial of Degree }}n\,\,\,\left( {{\text{see page 629}}} \right) \cr & {\text{Let }}f{\text{ be a function that can be differentiated }}n{\text{ times at 0}}{\text{. The Taylor }} \cr & {\text{polynomial of degree }}n{\text{ for }}f{\text{ at 0 is }} \cr & {P_n}\left( x \right) = f\left( 0 \right) + \frac{{{f^{\left( 1 \right)}}\left( 0 \right)}}{{1!}}x + \frac{{{f^{\left( 2 \right)}}\left( 0 \right)}}{{2!}}{x^2} + \cdots + \frac{{{f^{\left( n \right)}}\left( 0 \right)}}{{n!}}{x^n} = \sum\limits_{i = 0}^n {\frac{{{f^{\left( n \right)}}\left( 0 \right)}}{{i!}}} {x^i} \cr & {\text{Find the Taylor polynomials of degree 4 at 0}}{\text{. }} \cr & {\text{then }}n = 4. \cr & {\text{The }}n{\text{ - th derivatives are}} \cr & {f^{\left( 1 \right)}}\left( x \right) = \frac{d}{{dx}}\left[ {{{\left( {x - 1} \right)}^{1/3}}} \right] = \frac{1}{3}{\left( {x - 1} \right)^{ - 2/3}} \cr & {f^{\left( 2 \right)}}\left( x \right) = \frac{d}{{dx}}\left[ {\frac{1}{3}{{\left( {x - 1} \right)}^{ - 2/3}}} \right] = - \frac{2}{9}{\left( {x - 1} \right)^{ - 5/3}} \cr & {f^{\left( 3 \right)}}\left( x \right) = \frac{d}{{dx}}\left[ { - \frac{2}{9}{{\left( {x - 1} \right)}^{ - 5/3}}} \right] = \frac{{10}}{{27}}{\left( {x - 1} \right)^{ - 8/3}} \cr & {f^{\left( 4 \right)}}\left( x \right) = \frac{d}{{dx}}\left[ {\frac{{10}}{{27}}{{\left( {x - 1} \right)}^{ - 8/3}}} \right] = - \frac{{80}}{{81}}{\left( {x - 1} \right)^{ - 11/3}} \cr & {\text{evaluate }}f\left( 0 \right),{f^{\left( 1 \right)}}\left( 0 \right),{f^{\left( 2 \right)}}\left( 0 \right),{f^{\left( 3 \right)}}\left( 0 \right),{f^{\left( 4 \right)}}\left( 0 \right) \cr & f\left( 0 \right) = {\left( {0 - 1} \right)^{1/3}} = - 1 \cr & {f^{\left( 1 \right)}}\left( 0 \right) = \frac{1}{3}{\left( {0 - 1} \right)^{ - 2/3}} = \frac{1}{3} \cr & {f^{\left( 2 \right)}}\left( 0 \right) = - \frac{2}{9}{\left( {0 - 1} \right)^{ - 5/3}} = \frac{2}{9} \cr & {f^{\left( 3 \right)}}\left( 0 \right) = \frac{{10}}{{27}}{\left( {0 - 1} \right)^{ - 8/3}} = \frac{{10}}{{27}} \cr & {f^{\left( 4 \right)}}\left( 0 \right) = - \frac{{80}}{{81}}{\left( {0 - 1} \right)^{ - 11/3}} = \frac{{80}}{{81}} \cr & {\text{Replace the found values into the definition of Taylor Polynomial of Degree }}n \cr & {\text{for }}n = 4 \cr & {P_4}\left( x \right) = f\left( 0 \right) + \frac{{{f^{\left( 1 \right)}}\left( 0 \right)}}{{1!}}x + \frac{{{f^{\left( 2 \right)}}\left( 0 \right)}}{{2!}}{x^2} + \frac{{{f^{\left( 3 \right)}}\left( 0 \right)}}{{3!}}{x^3} + \frac{{{f^{\left( 4 \right)}}\left( 0 \right)}}{{4!}}{x^4} \cr & {P_4}\left( x \right) = - 1 + \frac{{1/3}}{{1!}}x + \frac{{2/9}}{{2!}}{x^2} + \frac{{10/27}}{{3!}}{x^3} + \frac{{80/81}}{{4!}}{x^4} \cr & {\text{simplifying}} \cr & {P_4}\left( x \right) = - 1 + \frac{1}{3}x + \frac{1}{9}{x^2} + \frac{5}{{81}}{x^3} + \frac{{10}}{{243}}{x^4} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.