Calculus with Applications (10th Edition)

Published by Pearson
ISBN 10: 0321749006
ISBN 13: 978-0-32174-900-0

Chapter 11 - Probability and Calculus - Chapter Review - Review Exercises - Page 601: 16

Answer

$$f\left( x \right){\text{ }}is{\text{ }}a{\text{ }}probability{\text{ }}density{\text{ }}function$$

Work Step by Step

$$\eqalign{ & f\left( x \right) = \frac{1}{{27}}\left( {2x + 4} \right);\,\,\,\,\,\,\,\left[ {1,4} \right] \cr & {\text{The function f is a probability density function of a random variable X in the interval }} \cr & \left[ {a,b} \right]{\text{ if}} \cr & 1{\text{ condition}}:f\left( x \right) \geqslant 0{\text{ for all }}x{\text{ in the interval }}\left[ {a,b} \right].{\text{ then}} \cr & \frac{1}{{27}}\left( {2x + 4} \right) \geqslant 0 \cr & 2x + 4 \geqslant 0 \cr & x \geqslant - 2 \cr & \left[ {1,4} \right]{\text{ is on the interval }}\left[ { - 2,\infty } \right).{\text{ then }}f\left( x \right) \geqslant 0{\text{ for the interval }}\left[ {1,4} \right] \cr & \cr & 2{\text{ condition}}:\int_a^b {f\left( x \right)} dx = 1.{\text{ then}} \cr & \int_1^4 {\frac{1}{{27}}\left( {2x + 4} \right)} dx\mathop = \limits^? 1 \cr & {\text{integrating}} \cr & = \frac{1}{{27}}\left( {{x^2} + 4x} \right)_1^4 \cr & = \frac{1}{{27}}\left( {{{\left( 4 \right)}^2} + 4\left( 4 \right)} \right) - \frac{1}{{27}}\left( {{{\left( 1 \right)}^2} + 4\left( 1 \right)} \right) \cr & {\text{simplifying}} \cr & = \frac{{32}}{{27}} - \frac{5}{{27}} \cr & = 1 \cr & \cr & {\text{The condition 1 and 2 are verified}}{\text{, then }} \cr & f\left( x \right){\text{ }}is{\text{ }}a{\text{ }}probability{\text{ }}density{\text{ }}function \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.