Calculus with Applications (10th Edition)

Published by Pearson
ISBN 10: 0321749006
ISBN 13: 978-0-32174-900-0

Chapter 10 - Differential Equations - 10.2 Linear First-Order Differential Equations - 10.2 Exercises - Page 543: 2

Answer

$$y = \frac{{12}}{5} + C{e^{ - 5x}}$$

Work Step by Step

$$\eqalign{ & \frac{{dy}}{{dx}} + 5y = 12 \cr & {\text{this equation is already written in the form }}\frac{{dy}}{{dx}} + P\left( x \right)y = Q\left( x \right) \cr & {\text{comparing }}\frac{{dy}}{{dx}} + 5y = 12{\text{ with }}\frac{{dy}}{{dx}} + P\left( x \right)y = Q\left( x \right){\text{ we can note that }}P\left( x \right){\text{ is 5 }} \cr & {\text{The integrating factor is }}I\left( x \right) = {e^{\int {P\left( x \right)} dx}} \cr & I\left( x \right) = {e^{\int {P\left( x \right)} dx}} = {e^{\int 5 dx}} = {e^{5x}} \cr & {\text{multiplying both sides of the differential equation by }}{e^x} \cr & {e^{5x}}\frac{{dy}}{{dx}} + 5{e^{5x}}y = 12{e^{5x}} \cr & {\text{Write the terms on the left in the form }}{D_x}\left[ {I\left( x \right)y} \right] \cr & {D_x}\left[ {{e^{5x}}y} \right] = 12{e^{5x}} \cr & {\text{solve for }}y{\text{ integrating both sides}} \cr & {e^{5x}}y = \int {12{e^{5x}}} dx \cr & {e^{5x}}y = 12\left( {\frac{{{e^{5x}}}}{5}} \right) + C \cr & {e^{5x}}y = \frac{{12{e^{5x}}}}{5} + C \cr & y = \frac{{12}}{5} + \frac{C}{{{e^{5x}}}} \cr & {\text{or}} \cr & y = \frac{{12}}{5} + C{e^{ - 5x}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.