Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 9 - Section 9.5 - Linear Equations - 9.5 Exercises - Page 625: 18

Answer

$y = \frac{x~ln~x}{2}-\frac{x}{4}+\frac{1}{4x}$

Work Step by Step

A first-order linear differential equation is one that can be put into the form: $\frac{dy}{dx} + P(x)~y = Q(x)$ We can consider the given equation: $xy' + y = x~ln~x$ $y' + \frac{y}{x} = ln~x$ Let $P(x) = \frac{1}{x}$ Let $Q(x) = ln~x$ We can find the integrating factor: $I(x) = e^{\int \frac{1}{x} ~dx} = e^{ln~x} = x$ We can multiply by the integrating factor: $xy'+y = x~ln~x$ $\frac{d}{dx}(x~y) = x~ln~x$ We can integrate both sides of the equation: $x~y = \int x~ln~x~dx$ Let $u = ln~x$ $\frac{du}{dx} = \frac{1}{x}$ Let $dv = x~dx$ $v = \frac{x^2}{2}$ $\int u~dv = uv - \int v~du$ $\int u~dv = \frac{x^2~ln~x}{2} - \int \frac{x}{2}~dx$ $\int u~dv = \frac{x^2~ln~x}{2} - \frac{x^2}{4}+C$ Then: $x~y = \frac{x^2~ln~x}{2} - \frac{x^2}{4}+C$ $y = \frac{x~ln~x}{2}-\frac{x}{4}+\frac{C}{x}$ We can use the initial condition to find $C$: $y(1) = 0$ $\frac{(1)~ln~1}{2}-\frac{1}{4}+\frac{C}{1} = 0$ $0-\frac{1}{4}+C = 0$ $C = \frac{1}{4}$ We can write the solution: $y = \frac{x~ln~x}{2}-\frac{x}{4}+\frac{1}{4x}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.