Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 9 - Section 9.5 - Linear Equations - 9.5 Exercises - Page 625: 14

Answer

$\displaystyle r = \frac{1}{\ln t}(e^t + C)$

Work Step by Step

$\displaystyle t \ln t \frac{dr}{dt}+r=te^t$ $\displaystyle \frac{dr}{dt}+\frac{1}{t \ln t}r=\frac{e^t}{\ln t}$ Find the integrating factor $I(t)$: $\displaystyle I(t) = e^{\int \frac{1}{t \ln t} dt}$ Substitute using $u= \ln t$, and $du=\frac{1}{t}dt$. $\displaystyle I(t) = e^{\ln \ln t} = \ln t$ Now, use the integrating factor $I(t)$ to solve the first-order linear differential equation: $\displaystyle \frac{d(r\ln t)}{dt} = \frac{e^t \ln t}{\ln t} = e^t$ Integrate both sides: $\displaystyle r\ln t = \int e^t dt$ $\displaystyle r = \frac{1}{\ln t}(e^t + C)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.