Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 8 - Section 8.5 - Probability - 8.5 Exercises - Page 580: 13

Answer

(a) The probability that the amount of REM sleep is between 30 and 60 minutes is $\frac{19}{32}$ which is 59.4% (b) The mean amount of REM sleep is 40 minutes.

Work Step by Step

(a) We can find $P(30 \leq T \leq 60)$: $P(30 \leq T \leq 60) = \int_{30}^{60}f(t)~dt$ $P(30 \leq T \leq 60) = \int_{30}^{40}f(t)~dt+\int_{40}^{60}f(t)~dt$ $P(30 \leq T \leq 60) = \int_{30}^{40}\frac{1}{1600}t~dt+\int_{40}^{60}\frac{1}{20}-\frac{1}{1600}t~dt$ $P(30 \leq T \leq 60) = \frac{1}{3200}t^2~\vert_{30}^{40}+(\frac{1}{20}t-\frac{1}{3200}t^2)~\vert_{40}^{60}$ $P(30 \leq T \leq 60) = \frac{(40)^2}{3200}-\frac{(30)^2}{3200}+(\frac{60}{20}-\frac{(60)^2}{3200})-(\frac{40}{20}-\frac{(40)^2}{3200})$ $P(30 \leq T \leq 60) = \frac{16}{32}-\frac{9}{32}+\frac{96}{32}-\frac{36}{32}-\frac{64}{32}+\frac{16}{32}$ $P(30 \leq T \leq 60) = \frac{19}{32}$ The probability that the amount of REM sleep is between 30 and 60 minutes is $\frac{19}{32}$ which is 59.4% (b) We can find the mean amount of REM sleep: $\mu = \int_{-\infty}^{\infty}t~f(t)~dt$ $\mu = \int_{0}^{40}t~f(t)~dt+ \int_{40}^{80}t~f(t)~dt$ $\mu = \int_{0}^{40}\frac{1}{1600}t^2~dt+ \int_{40}^{80}(\frac{1}{20}t-\frac{1}{1600}t^2)~dt$ $\mu = \frac{1}{4800}t^3~\vert_{0}^{40}+ (\frac{1}{40}t^2-\frac{1}{4800}t^3)~\vert_{40}^{80}$ $\mu = \frac{(40)^3}{4800}-0+ (\frac{(80)^2}{40}-\frac{(80)^3}{4800})-(\frac{(40)^2}{40}-\frac{(40)^3}{4800})$ $\mu = \frac{40}{3}+ \frac{480}{3}-\frac{320}{3}-\frac{120}{3}+\frac{40}{3}$ $\mu = 40$ The mean amount of REM sleep is 40 minutes.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.