Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 8 - Section 8.5 - Probability - 8.5 Exercises - Page 580: 10

Answer

(a) (i) The probability that a bulb fails within the first 200 hours is 0.18 (ii) The probability that a bulb burns for more than 800 hours is 0.45 (b) The median lifetime is 693 hours.

Work Step by Step

$f(t) = \frac{1}{\mu}e^{-t/\mu},$ where $t \gt 0$ $f(t) = \frac{1}{1000}e^{-t/1000}$ (a) (i) We can find $P(T \leq 200)$: $P(T \leq 200) = \int_{0}^{200}f(t)~dt$ $P(T \leq 200) = \int_{0}^{200}\frac{1}{1000}e^{-t/1000}~dt$ $P(T \leq 200) = -e^{-t/1000}~\vert_{0}^{200}$ $P(T \leq 200) = 1-e^{-200/1000}$ $P(T \leq 200) = 1-e^{-0.2}$ $P(T \leq 200) = 0.18$ The probability that a bulb fails within the first 200 hours is 0.18 (ii) We can find $P(T \gt 800)$: $P(T \gt 800) = \int_{800}^{\infty}f(t)~dt$ $P(T \gt 800) = \int_{800}^{\infty}\frac{1}{1000}e^{-t/1000}~dt$ $P(T \gt 800) = -e^{-t/1000}~\vert_{800}^{\infty}$ $P(T \gt 800) = 0+e^{-800/1000}$ $P(T \gt 800) = e^{-0.8}$ $P(T \gt 800) = 0.45$ The probability that a bulb burns for more than 800 hours is 0.45 (b) To find the median, we can find $t$ such that $P(T \lt t) = 0.5$: $P(T \lt t) = 0.5$ $\int_{0}^{t}f(t)~dt = 0.5$ $\int_{0}^{t}\frac{1}{1000}e^{-t/1000}~dt = 0.5$ $-e^{-t/1000}~\vert_{0}^{t} = 0.5$ $1-e^{-t/1000} = 0.5$ $e^{-t/1000} = 0.5$ $-t/1000 = ln(0.5)$ $t = -1000~ln(0.5)$ $t = 693$ The median lifetime is 693 hours.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.