Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 8 - Section 8.2 - Area of a Surface of Revolution - 8.2 Exercises - Page 555: 12

Answer

The area of the surface obtained by rotating the curve about the x-axis is: $$ \begin{aligned} S&=\int 2 \pi y d s \\ &=\int_{\frac{1}{2}}^{1} 2 \pi (\frac{x^{3}}{6}+\frac{1}{2x} ) (\frac{x^{2}}{2}+\frac{1}{2x^{2}}) dx\\ &=\frac{263}{256} \pi. \end{aligned} $$

Work Step by Step

$$ y= \frac{x^{3}}{6}+\frac{1}{2x}, \quad \quad \frac{1}{2} \leq x \leq 1 $$ $\Rightarrow$ $$ y^{\prime} =\frac{dy}{dx}= \frac{x^{2}}{2}-\frac{1}{2x^{2}} $$ $\Rightarrow$ $$ \begin{aligned} ds &= \sqrt {1+\left(y^{\prime}\right)^{2}} dx \\ &=\sqrt{1+\left(\frac{x^{2}}{2}-\frac{1}{2x^{2}} \right)^{2}} dx\\ &=\sqrt{\frac{x^{4}}{4}+\frac{1}{2}+\frac{1}{4x^{4}}}dx \\ &=\sqrt{(\frac{x^{2}}{2}+\frac{1}{2x^{2}})^{2}} dx\\ &= (\frac{x^{2}}{2}+\frac{1}{2x^{2}})dx \end{aligned} $$ So, the area of the surface obtained by rotating the curve about the x-axis is: $$ \begin{aligned} S&=\int 2 \pi y d s \\ &=\int_{\frac{1}{2}}^{1} 2 \pi (\frac{x^{3}}{6}+\frac{1}{2x} ) (\frac{x^{2}}{2}+\frac{1}{2x^{2}}) dx\\ &=2 \pi \int_{\frac{1}{2}}^{1} (\frac{x^{5}}{12}+\frac{x}{12} +\frac{x}{4}+\frac{1}{4x^{3}} ) dx\\ &=2 \pi \int_{1 / 2}^{1}\left(\frac{x^{5}}{12}+\frac{x}{3}+\frac{x^{-3}}{4}\right) d x\\ &=2 \pi\left[\frac{x^{6}}{72}+\frac{x^{2}}{6}-\frac{x^{-2}}{8}\right]_{1 / 2}^{1}\\ &=2 \pi\left[\left(\frac{1}{72}+\frac{1}{6}-\frac{1}{8}\right)-\left(\frac{1}{64 \cdot 72}+\frac{1}{24}-\frac{1}{2}\right)\right]\\ &=2 \pi\left(\frac{263}{512}\right) \\ &=\frac{263}{256} \pi. \end{aligned} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.