Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 8 - Section 8.2 - Area of a Surface of Revolution - 8.2 Exercises - Page 555: 10

Answer

The area of the surface obtained by rotating the curve about the x-axis is: $$ S=\int_{0}^{1} 2 \pi y d s =\pi (e+1) $$

Work Step by Step

$$ y= \sqrt {1+e^{x}}, \quad \quad 0 \leq x \leq 1 $$ $\Rightarrow$ $$ y^{\prime} =\frac{dy}{dx}= \frac{1}{2}(1+e^{x})^{-\frac{1}{2}}. e^{x}=\frac{e^{x}}{2\sqrt {1+e^{x}}} $$ $\Rightarrow$ $$ \begin{aligned} ds &= \sqrt {1+\left(y^{\prime}\right)^{2}} dx \\ &=\sqrt{1+\left(\frac{e^{x}}{2\sqrt {1+e^{x}}} \right)^{2}} dx\\ &=\sqrt{1+\frac{e^{2 x}}{4\left(1+e^{x}\right)}}dx \\ &=\sqrt{\frac{4+4 e^{x}+e^{2 x}}{4\left(1+e^{x}\right)}} dx\\ &=\sqrt{\frac{\left(e^{x}+2\right)^{2}}{4\left(1+e^{x}\right)}}dx \\ &=\frac{e^{x}+2}{2 \sqrt{1+e^{x}}}dx. \end{aligned} $$ So, the area of the surface obtained by rotating the curve about the x-axis is: $$ \begin{aligned} S&=\int 2 \pi y d s \\ &=\int_{0}^{1} 2 \pi \sqrt {1+e^{x}} \frac{e^{x}+2}{2 \sqrt{1+e^{x}}}dx\\ &=\pi \int_{0}^{1} (e^{x}+2)dx\\ &=\pi [e^{x}+2x]_0^1\\ &=\pi [(e+2)-(1+0)]\\ &=\pi (e+1) \end{aligned} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.