Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 8 - Review - Exercises - Page 582: 10

Answer

$$ y= \int_{0}^{x} \sqrt {\sqrt {t}-1}) dt, \quad \quad 1 \leq x \leq 16 $$ the area of the surface obtained by rotating the given curve about the y-axis is: $$ \begin{aligned} S&=\int 2 \pi x d s \\ &=\int_{1}^{16} 2 \pi x \sqrt {\sqrt {x}} dx\\ &=\frac{4088}{9}\pi \end{aligned} $$

Work Step by Step

$$ y= \int_{0}^{x} \sqrt {\sqrt {t}-1}) dt, \quad \quad 1 \leq x \leq 16 $$ $\Rightarrow$ $$ y^{\prime} =\frac{dy}{dx}=\sqrt {\sqrt {x}-1}) $$ $\Rightarrow$ $$ \begin{aligned} ds &= \sqrt {1+\left(y^{\prime}\right)^{2}} dx \\ &=\sqrt{1+\left(\sqrt {\sqrt {x}-1})\right)^{2}} dx\\ &=\sqrt {\sqrt {x}} \end{aligned} $$ So, the area of the surface obtained by rotating the curve about the y-axis is: $$ \begin{aligned} S&=\int 2 \pi x d s \\ &=\int_{1}^{16} 2 \pi x \sqrt {\sqrt {x}} dx\\ &=2 \pi \int_{1}^{16} x ^{\frac{5}{4}} dx\\ &=2 \pi \frac{4}{9} [x^{\frac{9}{4}} ]_{1}^{16} \\ &=\frac{8\pi}{9} (512-1)\\ &=\frac{4088}{9}\pi \end{aligned} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.