Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 7 - Section 7.6 - Integration Using Tables and Computer Algebra Systems - 7.6 Exercises - Page 513: 30

Answer

$\displaystyle \frac{e^{t}}{1+\alpha^{2}}[\sin(\alpha t-3)-\alpha \cos(\alpha t-3)]+C$

Work Step by Step

Assuming $\alpha \neq 0$, $\displaystyle \int e^{t}\sin(\alpha t-3)dt=\quad \left[\begin{array}{ll} u=\alpha t -3 & \\ du=\alpha dt & dt=\dfrac{du}{\alpha} \end{array}\right]$ $\displaystyle \frac{1}{\alpha}\int e^{(u+3)/\alpha}\sin udu=\dfrac{1}{\alpha}e^{3/\alpha}\int e^{(1/\alpha)u}\sin udu$ Table of integrals: $\color{blue}{98. \displaystyle \quad\int e^{au}\sin budu=\frac{e^{\mathrm{a}u}}{a^{2}+b^{2}} (a\sin bu-b \cos bu)+C }$ $a=1/\alpha,\quad b=1$ $\displaystyle \frac{1}{\alpha}e^{3/\alpha}\cdot\frac{e^{(1/\alpha)u}}{(1/\alpha)^{2}+1^{2}}(\frac{1}{\alpha}\sin u-\cos u)+C$ $=\displaystyle \frac{1}{\alpha}e^{3/\alpha}\cdot e^{(u/\alpha)}\frac{\alpha^{2}}{1+\alpha^{2}}(\frac{1}{\alpha}\sin u-\cos u)+C$ $=\displaystyle \frac{e^{(u+3)/\alpha}}{1+\alpha^{2}}(\sin u-\alpha\cos u)+C$ ... bring back $t$... $=\displaystyle \frac{e^{(\alpha t-3+3)/\alpha}}{1+\alpha^{2}}[\sin(\alpha t-3)-\alpha \cos(\alpha t-3)]+C$ $=\displaystyle \frac{e^{t}}{1+\alpha^{2}}[\sin(\alpha t-3)-\alpha \cos(\alpha t-3)]+C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.