Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 7 - Section 7.6 - Integration Using Tables and Computer Algebra Systems - 7.6 Exercises - Page 513: 17

Answer

$\displaystyle \frac{2y-1}{8}\sqrt{6+4y-4y^{2}}-\frac{7}{8}\sin^{-1}\frac{1-2y}{\sqrt{7}}-\frac{1}{12}(6+4y-4y^{2})^{3/2}+C$

Work Step by Step

$6+4y-4y^{2}=6+1-1+4y-4y^{2}=7-(1-2y)^{2}$ If we substitute $u=(1-2y)$, then $du=-2dy$ and $y=\displaystyle \frac{1-u}{2}$, and the integral becomes $\displaystyle \int\frac{1-u}{2}\sqrt{(\sqrt{7})^{2}-u^{2}}\frac{du}{-2}=-\frac{1}{4}\int\sqrt{(\sqrt{7})^{2}-u^{2}}du+\frac{1}{4}\int u\sqrt{(\sqrt{7})^{2}-u^{2}}du$ For $I_{1}=\displaystyle \int\sqrt{(\sqrt{7})^{2}-u^{2}}du$ we use formula 30. $\displaystyle \int\sqrt{\mathrm{a}^{2}-u^{2}}du=\frac{u}{2}\sqrt{a^{2}-u^{2}}+\frac{a^{2}}{2}\sin^{-1}\frac{u}{a}+C_{1}$ For $I_{2}$, we substitute $\left[t=7-u^{2} , dt=-2udu\right]$ $I_{2}=\displaystyle -\frac{1}{2}\int\sqrt{t}dt=-\frac{1}{3}t^{3/2}+C_{2}=-\frac{1}{3}(7-u^{2})^{3/2}+C_{2}$ $=\displaystyle -\frac{1}{3}(6+4y-4y^{2})^{3/2}+C_{2}$ $\displaystyle \int y\sqrt{6+4y-4y^{2}}dy=-\frac{1}{4}I_{1}+\frac{1}{4}I_{2}$ $=-\displaystyle \frac{1}{4}(\frac{1-2y}{2}\sqrt{6+4y-4y^{2}}+\frac{7}{2}\sin^{-1}\frac{1-2y}{\sqrt{7}})+\frac{1}{4}(-\frac{1}{3}(6+4y-4y^{2})^{3/2})+C$ $=\displaystyle \frac{2y-1}{8}\sqrt{6+4y-4y^{2}}-\frac{7}{8}\sin^{-1}\frac{1-2y}{\sqrt{7}}-\frac{1}{12}(6+4y-4y^{2})^{3/2}+C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.