Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 7 - Section 7.2 - Trigonometric Integrals - 7.2 Exercises - Page 484: 30

Answer

$\displaystyle \frac{\pi}{4}-\frac{2}{3}$

Work Step by Step

From the Strategy for Evaluating $\displaystyle \int\tan^{m}x\sec^{n}xdx$, case (a) we use $\sec^{2}x=1+\tan^{2}x$ $\displaystyle \int_{0}^{\pi/4}\tan^{4}tdt=\int_{0}^{\pi/4}\tan^{2}t\left(\sec^{2}t-1\right)dt$ $=\displaystyle \int_{0}^{\pi/4}\tan^{2}t\sec^{2}tdt-\int_{0}^{\pi/4}\tan^{2}tdt$ ... For the first integral, $\left[\begin{array}{lll} u=\tan t & \text{bounds:} & 0, 1\\ du=\sec^{2}tdt & & \end{array}\right],$ for the second, apply the identity $=\displaystyle \int_{0}^{1}u^{2}du-\int_{0}^{\pi/4}\left(\sec^{2}t-1\right)dt$ $=\displaystyle \left[\frac{1}{3}u^{3}\right]_{0}^{1}-\left[\tan t-t\right]_{0}^{\pi/4}$ $=\displaystyle \frac{1}{3}-\left[\left(1-\frac{\pi}{4}\right)-0\right]$ $=\displaystyle \frac{\pi}{4}-\frac{2}{3}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.