Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 7 - Section 7.2 - Trigonometric Integrals - 7.2 Exercises - Page 484: 17


$\frac{1}{2}\sin^4 x$

Work Step by Step

$\int \sin^2 x\sin 2x\ dx$ $=\int \sin^2 x*2\sin x\cos x\ dx$ $=2\int\sin^3 x\cos x\ dx$ We use u substitution. Let $u=\sin x$. Then, $du=\cos x\ dx$. $=2\int u^3\ du$ $=2*\frac{u^4}{4}$ $=\boxed{\frac{1}{2}\sin^4 x}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.