Answer
A. The domain is $(-\infty,2)\cup (2, \infty)$
B. The y-intercept is $0$
The x-intercept is $0$
C. The function is not an even function or an odd function.
D. $\lim\limits_{x \to -\infty} \frac{x^3}{x-2} = \infty$
$\lim\limits_{x \to \infty} \frac{x^3}{x-2} = \infty$
There is no horizontal asymptote.
$\lim\limits_{x \to 2^-} \frac{x^3}{x-2} = -\infty$
$\lim\limits_{x \to 2^+} \frac{x^3}{x-2} = \infty$
$x = 2$ is a vertical asymptote.
E. The function is decreasing on the intervals $(-\infty, 0)\cup (0,2)\cup (2,3)$
The function is increasing on the intervals $(3, \infty)$
F. The local minimum is $(3, 27)$
G. The graph is concave down on the interval $(0,2)$
The graph is concave up on the intervals $(-\infty,0)\cup (2,\infty)$
The point of inflection is $(0,0)$
H. We can see a sketch of the curve below.
Work Step by Step
$y = \frac{x^3}{x-2}$
A. The function is defined for all real numbers except $x=2$
The domain is $(-\infty,2)\cup (2, \infty)$
B. When $x = 0$, then $y = \frac{0^3}{0-2}= 0$
The y-intercept is $0$
When $y = 0$:
$\frac{x^3}{x-2} = 0$
$x^3 = 0$
$x = 0$
The x-intercept is $0$
C. The function is not an even function or an odd function.
D. $\lim\limits_{x \to -\infty} \frac{x^3}{x-2} = \infty$
$\lim\limits_{x \to \infty} \frac{x^3}{x-2} = \infty$
There is no horizontal asymptote.
$\lim\limits_{x \to 2^-} \frac{x^3}{x-2} = -\infty$
$\lim\limits_{x \to 2^+} \frac{x^3}{x-2} = \infty$
$x = 2$ is a vertical asymptote.
E. We can find the values of $x$ such that $y' = 0$:
$y' = \frac{(3x^2)(x-2)-(x^3)(1)}{(x-2)^2} = \frac{2x^3-6x^2}{(x-2)^2} = 0$
$2x^3-6x^2 = 0$
$2x^2(x-3) = 0$
$x = 0, 3$
When $x \lt 0$ or $0 \lt x \lt 2$ or $2 \lt x \lt 3$, then $y' \lt 0$
The function is decreasing on the intervals $(-\infty, 0)\cup (0,2)\cup (2,3)$
When $x \gt 3$, then $y' \gt 0$
The function is increasing on the intervals $(3, \infty)$
F. When $x = 3$, then $y = \frac{3^3}{3-2}= 27$
The local minimum is $(3, 27)$
G. We can find the values of $x$ such that $y'' = 0$:
$y'' = \frac{(6x^2-12x)(x-2)^2-(2x^3-6x^2)(2)(x-2)}{(x-2)^4}$
$y'' = \frac{(6x^2-12x)(x-2)-(2x^3-6x^2)(2)}{(x-2)^3}$
$y'' = \frac{6x^3-24x^2+24x-4x^3+12x^2}{(x-2)^3}$
$y'' = \frac{2x^3-12x^2+24x}{(x-2)^3} = 0$
$2x^3-12x^2+24x = 0$
$2x(x^2-6x+12) = 0$
$x = 0$
When $0 \lt x \lt 2$ then $y'' \lt 0$
The graph is concave down on the interval $(0,2)$
When $x \lt 0$ or $x \gt 2$, then $y'' \gt 0$
The graph is concave up on the intervals $(-\infty,0)\cup (2,\infty)$
When $x = 0$, then $y = \frac{0^3}{0-2}= 0$
The point of inflection is $(0,0)$
H. We can see a sketch of the curve below.