Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 4 - Section 4.5 - Summary of Curve Sketching - 4.5 Exercises - Page 321: 4

Answer

A. The domain is $(-\infty, \infty)$ B. The y-intercept is $8$ The four x-intercepts are $\pm \sqrt{4 - 2\sqrt{2}}$ and $\pm \sqrt{4 + 2\sqrt{2}}$ C. The function is an even function. D. $\lim\limits_{x \to -\infty} (x^4-8x^2+8) = \infty$ $\lim\limits_{x \to \infty} (x^4-8x^2+8) = \infty$ There are no asymptotes. E. The function is increasing on the intervals $(-2,0)\cup (2, \infty)$ The function is decreasing on the intervals $(-\infty,-2)\cup (0,2)$ F. $(-2,-8)$ and $(2, -8)$ are local minima. $(0, 8)$ is the local maximum. G. The graph is concave down on the interval $(-\frac{2\sqrt{3}}{3}, \frac{2\sqrt{3}}{3})$ The graph is concave up on the intervals $(-\infty, -\frac{2\sqrt{3}}{3}) \cup (\frac{2\sqrt{3}}{3}, \infty)$ The points of inflection are $(-\frac{2\sqrt{3}}{3}, -\frac{8}{9})$ and $(\frac{2\sqrt{3}}{3}, -\frac{8}{9})$ H. We can see a sketch of the curve below.

Work Step by Step

$y = x^4-8x^2+8$ A. The function is defined for all real numbers. The domain is $(-\infty, \infty)$ B. When $x = 0,$ then $y = (0)^4-8(0)^2+8 = 8$ The y-intercept is $8$ When $y = 0$: $x^4-8x^2+8 = 0$ We can use the quadratic formula: $x^2 = \frac{8\pm \sqrt{(-8)^2-(4)(1)(8)}}{2(1)}$ $x^2 = \frac{8\pm \sqrt{32}}{2}$ $x^2 = 4 \pm 2\sqrt{2}$ $x = \pm \sqrt{4 \pm 2\sqrt{2}}$ The four x-intercepts are $\pm \sqrt{4 - 2\sqrt{2}}$ and $\pm \sqrt{4 + 2\sqrt{2}}$ C. $(-x)^4-8(-x)^2+8 = x^4-8x^2+8$ The function is an even function. D. $\lim\limits_{x \to -\infty} (x^4-8x^2+8) = \infty$ $\lim\limits_{x \to \infty} (x^4-8x^2+8) = \infty$ There are no asymptotes. E. We can find the values of $x$ such that $y' = 0$: $y' = 4x^3-16x = 0$ $4x(x^2-4) = 0$ $x = 0, -2, 2$ The function is increasing on the intervals $(-2,0)\cup (2, \infty)$ The function is decreasing on the intervals $(-\infty,-2)\cup (0,2)$ F. When $x = -2$, then $y = (-2)^4-8(-2)^2+8= -8$ When $x = 2$, then $y = (2)^4-8(2)^2+8= -8$ $(-2,-8)$ and $(2, -8)$ are local minima. When $x = 0$, then $y = (0)^4-8(0)^2+8= 8$ $(0, 8)$ is the local maximum. G. We can find the values of $x$ such that $y'' = 0$: $y'' = 12x^2-16 = 0$ $3x^2-4 = 0$ $x = \pm \frac{2\sqrt{3}}{3}$ When $-\frac{2\sqrt{3}}{3} \lt x \lt \frac{2\sqrt{3}}{3}$, then $y'' \lt 0$ The graph is concave down on the interval $(-\frac{2\sqrt{3}}{3}, \frac{2\sqrt{3}}{3})$ When $x \lt -\frac{2\sqrt{3}}{3}$ or $x \gt \frac{2\sqrt{3}}{3}$, then $y'' \gt 0$ The graph is concave up on the intervals $(-\infty, -\frac{2\sqrt{3}}{3}) \cup (\frac{2\sqrt{3}}{3}, \infty)$ When $x = -\frac{2\sqrt{3}}{3}$, then $y = (-\frac{2\sqrt{3}}{3})^4-8(-\frac{2\sqrt{3}}{3})^2+8= -\frac{8}{9}$ When $x = \frac{2\sqrt{3}}{3}$, then $y = (\frac{2\sqrt{3}}{3})^4-8(\frac{2\sqrt{3}}{3})^2+8= -\frac{8}{9}$ The points of inflection are $(-\frac{2\sqrt{3}}{3}, -\frac{8}{9})$ and $(\frac{2\sqrt{3}}{3}, -\frac{8}{9})$ H. We can see a sketch of the curve below.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.