Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 4 - Section 4.5 - Summary of Curve Sketching - 4.5 Exercises - Page 321: 12

Answer

A. The domain is $(-\infty,0) \cup (0, \infty)$ B. There is no y-intercept. There are no x-intercepts. C. The function is not an odd function or an even function. D. $y = 1$ is a horizontal asymptote. $x = 0$ is a vertical asymptote. E. The function is decreasing on the intervals $(-\infty, -2)\cup (0,\infty)$ The function is increasing on the interval $(-2,0)$ F. The local minimum is $(-2, \frac{3}{4})$ G. The graph is concave up on the interval $(-3,0)\cup (0,\infty)$ The graph is concave down on the interval $(-\infty, -3)$ The point of inflection is $(-3, \frac{7}{9})$ H. We can see a sketch of the curve below.

Work Step by Step

$y = 1+\frac{1}{x}+\frac{1}{x^2}$ A. The function is defined for all real numbers except $x = 0$ The domain is $(-\infty,0) \cup (0, \infty)$ B. There is no y-intercept because $x \neq 0$ When $y = 0$: $1+\frac{1}{x}+\frac{1}{x^2} = 0$ $\frac{x^2+x+1}{x^2} = 0$ There are no values of $x$ such that $y = 0$ There are no x-intercepts. C. The function is not an odd function or an even function. D. $\lim\limits_{x \to -\infty} (1+\frac{1}{x}+\frac{1}{x^2}) = 1$ $\lim\limits_{x \to \infty} (1+\frac{1}{x}+\frac{1}{x^2}) = 1$ $y = 1$ is a horizontal asymptote. $\lim\limits_{x \to 0^-} (1+\frac{1}{x}+\frac{1}{x^2}) = \infty$ $\lim\limits_{x \to 0^+} (1+\frac{1}{x}+\frac{1}{x^2}) = \infty$ $x = 0$ is a vertical asymptote. E. We can find the values of $x$ such that $y' = 0$: $y' = -\frac{1}{x^2}-\frac{2}{x^3} = 0$ $-\frac{1}{x^2} = \frac{2}{x^3}$ $x = -2$ When $x \lt -2$ or $x \gt 0$, then $y' \lt 0$ The function is decreasing on the intervals $(-\infty, -2)\cup (0,\infty)$ When $-2 \lt x \lt 0$, then $y' \gt 0$ The function is increasing on the interval $(-2,0)$ F. When $x = -2$, then $y = 1+\frac{1}{(-2)}+\frac{1}{(-2)^2} = \frac{3}{4}$ The local minimum is $(-2, \frac{3}{4})$ G. We can find the values of $x$ such that $y'' = 0$: $y'' = \frac{2}{x^3}+\frac{6}{x^4} = 0$ $2x+6= 0$ $x = -3$ When $-3 \lt x \lt 0~~$ or $x \gt 0$, then $y'' \gt 0$ The graph is concave up on the interval $(-3,0)\cup (0,\infty)$ When $x \lt -3$, then $y'' \lt 0$ The graph is concave down on the interval $(-\infty, -3)$ When $x = -3$, then $y = 1+\frac{1}{(-3)}+\frac{1}{(-3)^2} = \frac{7}{9}$ The point of inflection is $(-3, \frac{7}{9})$ H. We can see a sketch of the curve below.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.