Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 4 - Section 4.4 - Indeterminate Forms and l''Hospital''s Rule - 4.4 Exercises - Page 312: 63


$\lim\limits_{x \to \infty}x^{1/x}=1$

Work Step by Step

$\lim\limits_{x \to \infty}x^{1/x}=\lim\limits_{x \to \infty}(e^{ln~x})^{1/x}=\lim\limits_{x \to \infty}e^{\frac{1}{x}ln~x}$ $\lim\limits_{x \to \infty}\frac{ln~x}{x} = \lim\limits_{x \to \infty}\frac{(1/x)}{1} = 0$ Therefore: $\lim\limits_{x \to \infty}e^{\frac{1}{x}ln~x} = e^0 = 1$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.