Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 4 - Section 4.3 - How Derivatives Affect the Shape of a Graph - 4.3 Exercises - Page 303: 77

Answer

The three inflection points are: $(1,1), (-2-\sqrt{3}, \frac{1-\sqrt{3}}{4}),$ and $(-2+\sqrt{3}, \frac{1+\sqrt{3}}{4})$ The straight line connecting the three points has a slope of $\frac{1}{4}$ The three inflection points lie on one straight line.

Work Step by Step

$y = \frac{1+x}{1+x^2}$ $y' = \frac{(1+x^2)-(1+x)(2x)}{(1+x^2)^2}$ $y' = \frac{1+x^2-2x-2x^2}{(1+x^2)^2}$ $y' = \frac{1-2x-x^2}{(1+x^2)^2}$ $y'' = \frac{(-2-2x)(1+x^2)^2-(1-2x-x^2)(2)(1+x^2)(2x)}{(1+x^2)^4}$ $y'' = \frac{(-2-2x)(1+x^2)-(1-2x-x^2)(2)(2x)}{(1+x^2)^3}$ $y'' = \frac{-2-2x-2x^2-2x^3-4x+8x^2+4x^3}{(1+x^2)^3}$ $y'' = \frac{-2-6x+6x^2+2x^3}{(1+x^2)^3}$ We can find the values of $x$ such that $y''=0$: $y'' = \frac{-2-6x+6x^2+2x^3}{(1+x^2)^3} = 0$ $-2-6x+6x^2+2x^3 = 0$ $x^3+3x^2-3x-1 = 0$ $(x-1)(x^2+4x+1) = 0$ $x=1$ or $x^2+4x+1 = 0$ We can use the quadratic formula: $x = \frac{-4\pm \sqrt{(4)^2-(4)(1)(1)}}{2(1)}$ $x = \frac{-4\pm \sqrt{12}}{2}$ $x = -2 \pm \sqrt{3}$ When $x = 1$: $y = \frac{1+1}{1+1^2} = 1$ When $x = -2-\sqrt{3}$: $y = \frac{1+(-2-\sqrt{3})}{1+(-2-\sqrt{3})^2}$ $y = \frac{-1-\sqrt{3}}{1+4+4\sqrt{3}+3}$ $y = \frac{-1-\sqrt{3}}{8+4\sqrt{3}}\cdot \frac{8-4\sqrt{3}}{8-4\sqrt{3}}$ $y = \frac{4-4\sqrt{3}}{16}$ $y = \frac{1-\sqrt{3}}{4}$ When $x = -2+\sqrt{3}$: $y = \frac{1+(-2+\sqrt{3})}{1+(-2+\sqrt{3})^2}$ $y = \frac{-1+\sqrt{3}}{1+4-4\sqrt{3}+3}$ $y = \frac{-1+\sqrt{3}}{8-4\sqrt{3}}\cdot \frac{8+4\sqrt{3}}{8+4\sqrt{3}}$ $y = \frac{4+4\sqrt{3}}{16}$ $y = \frac{1+\sqrt{3}}{4}$ The three inflection points are: $(1,1), (-2-\sqrt{3}, \frac{1-\sqrt{3}}{4}),$ and $(-2+\sqrt{3}, \frac{1+\sqrt{3}}{4})$ We can find the slope $m$ of the line connecting the points $(1,1)$ and $(-2-\sqrt{3}, \frac{1-\sqrt{3}}{4})$ $m = \frac{(\frac{1-\sqrt{3}}{4})-1}{(-2-\sqrt{3})-1}$ $m = \frac{\frac{-3-\sqrt{3}}{4}}{-3-\sqrt{3}}$ $m = \frac{-3-\sqrt{3}}{-12-4\sqrt{3}}$ $m = \frac{3+\sqrt{3}}{12+4\sqrt{3}}\cdot \frac{12-4\sqrt{3}}{12-4\sqrt{3}}$ $m = \frac{24}{96}$ $m = \frac{1}{4}$ We can find the slope $m$ of the line connecting the points $(1,1)$ and $(-2+\sqrt{3}, \frac{1+\sqrt{3}}{4})$ $m = \frac{(\frac{1+\sqrt{3}}{4})-1}{(-2+\sqrt{3})-1}$ $m = \frac{\frac{-3+\sqrt{3}}{4}}{-3+\sqrt{3}}$ $m = \frac{-3+\sqrt{3}}{-12+4\sqrt{3}}$ $m = \frac{-3+\sqrt{3}}{-12+4\sqrt{3}}\cdot \frac{-12-4\sqrt{3}}{-12-4\sqrt{3}}$ $m = \frac{24}{96}$ $m = \frac{1}{4}$ The straight line connecting the three points has a slope of $\frac{1}{4}$ The three inflection points lie on one straight line.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.