Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 4 - Section 4.3 - How Derivatives Affect the Shape of a Graph - 4.3 Exercises - Page 301: 15

Answer

(a) $f$ is decreasing on the intervals $(-\infty, -\frac{ln(2)}{3})$ $f$ is increasing on the intervals $(-\frac{ln(2)}{3}, \infty)$ (b) There is no local maximum. The local minimum is $f(-\frac{ln(2)}{3}) = 2^{-2/3}+2^{1/3}$ (c) The graph is concave up on the interval $(-\infty, \infty)$ There are no points of inflection.

Work Step by Step

(a) $f(x) = e^{2x}+e^{-x}$ We can find the points where $f'(x) = 0$: $f'(x) = 2e^{2x}-e^{-x} = 0$ $2e^{2x} = e^{-x}$ $e^{3x} = \frac{1}{2}$ $3x = ln(\frac{1}{2})$ $3x = -ln(2)$ $x = -\frac{ln(2)}{3}$ When $x \lt -\frac{ln(2)}{3}$ then $f'(x) \lt 0$ $f$ is decreasing on the intervals $(-\infty, -\frac{ln(2)}{3})$ When $x \gt -\frac{ln(2)}{3}$ then $f'(x) \gt 0$ $f$ is increasing on the intervals $(-\frac{ln(2)}{3}, \infty)$ (b) $f(-\frac{ln(2)}{3}) = e^{(2)(-\frac{ln(2)}{3})}+e^{\frac{ln(2)}{3}}$ $f(-\frac{ln(2)}{3}) = [e^{ln(2)}]^{-2/3}+[e^{ln(2)}]^{1/3}$ $f(-\frac{ln(2)}{3}) = 2^{-2/3}+2^{1/3}$ There is no local maximum. The local minimum is $f(-\frac{ln(2)}{3}) = 2^{-2/3}+2^{1/3}$ (c) We can find the points where $f''(x) = 0$: $f''(x) = 4e^{2x}+e^{-x} = 0$ Since $4e^{2x}+e^{-x} \gt 0$ for all values of $x$, there are no points where $f''(x) = 0$ The graph is concave up when $f''(x) \gt 0$ The graph is concave up on the interval $(-\infty, \infty)$ There are no points of inflection.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.