Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 4 - Problems Plus - Page 363: 5

Answer

See the proof below.

Work Step by Step

$$ y=\frac{\sin x}{x} $$ $ \Rightarrow $ $$ y^{\prime}(x)=\frac{x \cos x -\sin x}{x^{2}} $$ $ \Rightarrow $ $$ \begin{split} y^{\prime\prime}(x) &=\frac{-x^{2}\sin x -2x \cos x +2\sin x}{x^{3}}\\ &=\frac{(2-x^{2})\sin x -2x \cos x }{x^{3}} \end{split} $$ If $(x,y)$ is an infection point, then $ y^{\prime\prime}(x) =0$ $ \Rightarrow $ $$ \begin{split} (2-x^{2})\sin x -2x \cos x &=0\\ (2-x^{2})\sin x &=2x \cos x \\ (2-x^{2})^{2}\sin^{2} x &=4x^{2} \cos^{2} x \\ (2-x^{2})^{2}\sin^{2} x &=4x^{2}(1-\sin^{2})\\ (4-4x^{2}+x^{4})\sin^{2} x &=4x^{2}-4x^{2}\sin^{2} \\ (4+x^{4})\sin^{2} x &=4x^{2} \\ (4+x^{4}) \frac{\sin^{2} x}{x^{2}} &=4 \\ (4+x^{4}) y^{2} &=4 \end{split} $$ where $ y=\frac{\sin x}{x}$. Thus we find that the infection points of the curve $ y=\frac{\sin x}{x}$ lie on the curve $(4+x^{4}) y^{2} =4$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.